Tight graphs and their primitive idempotents
Journal of Algebraic Combinatorics, Tome 10 (1999) no. 1, pp. 47-59.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we prove the following two theorems. Theorem 1 Let s $_{ i}$ r $_{ i}$ - s $_{ i - 1}$ r $_{ i - 1}$ = Ĩ ( s $_{ i - 1}$ r $_{ i}$ - s $_{ i}$ r $_{ i - 1} ) (1 \leqslant i \leqslant d). \sigma $_i $\rho $_i - $\sigma $_i - 1 $\rho $_i - 1 = $\in (\sigma $_i - 1 $\rho $_i - $\sigma $_i $\rho $_i - 1 ) ($1 \leqslant i \leqslant d$). Let $\begin{gathered} \underset{\raise0.3em\hbox$ begingathered undersetraise0.3em They defined $Gamma$ to be tight whenever $Gamma$ is not bipartite, and equality holds above.
Keywords: tight graph, distance-regular, association scheme, Kreĭn parameter
@article{JAC_1999__10_1_a2,
     author = {Pascasio, Arlene A.},
     title = {Tight graphs and their primitive idempotents},
     journal = {Journal of Algebraic Combinatorics},
     pages = {47--59},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1999__10_1_a2/}
}
TY  - JOUR
AU  - Pascasio, Arlene A.
TI  - Tight graphs and their primitive idempotents
JO  - Journal of Algebraic Combinatorics
PY  - 1999
SP  - 47
EP  - 59
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1999__10_1_a2/
LA  - en
ID  - JAC_1999__10_1_a2
ER  - 
%0 Journal Article
%A Pascasio, Arlene A.
%T Tight graphs and their primitive idempotents
%J Journal of Algebraic Combinatorics
%D 1999
%P 47-59
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1999__10_1_a2/
%G en
%F JAC_1999__10_1_a2
Pascasio, Arlene A. Tight graphs and their primitive idempotents. Journal of Algebraic Combinatorics, Tome 10 (1999) no. 1, pp. 47-59. http://geodesic.mathdoc.fr/item/JAC_1999__10_1_a2/