A new plethysm formula for symmetric functions
Journal of Algebraic Combinatorics, Tome 8 (1998) no. 3, pp. 253-272.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper gives a new formula for the plethysm of power-sum symmetric functions and Schur symmetric functions with one part. The form of the main result is that for $p _{ m}$ ( x) ^$\circ s _{ a}$ ( x) = å $_{ T}$ w $^{ maj $_ m$ ( T)} s _{ sh( T)}$ ( x) $p_\mu (\underline x) \circ s$_a $(\underline x) = \sum\limits_T {\underline $omega^maj_mu(T) s_sh(T) $(\underline x)}$ where the sum is over semistandard tableaux $T$ of weight $a ^{ b }$, w $\underline \omega $is a root of unity, and maj å $_{ T}$ w $^{ maj $_ m$ ( T)}$ sum$\limits_T {\omega $^maj_mu(T) where the sum is over semistandard tableaux T of shape w $^{ maj $_ m$ ( T)} : T \omega $^maj_mu(T) :T . This generalizes J. Stembridge's result [11] on the eigenvalues of elements of the symmetric group acting on the Specht modules.
Keywords: symmetric function, plethysm, eigenvalue, representation of the symmetric group
@article{JAC_1998__8_3_a1,
     author = {Doran, William F.IV},
     title = {A new plethysm formula for symmetric functions},
     journal = {Journal of Algebraic Combinatorics},
     pages = {253--272},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1998__8_3_a1/}
}
TY  - JOUR
AU  - Doran, William F.IV
TI  - A new plethysm formula for symmetric functions
JO  - Journal of Algebraic Combinatorics
PY  - 1998
SP  - 253
EP  - 272
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1998__8_3_a1/
LA  - en
ID  - JAC_1998__8_3_a1
ER  - 
%0 Journal Article
%A Doran, William F.IV
%T A new plethysm formula for symmetric functions
%J Journal of Algebraic Combinatorics
%D 1998
%P 253-272
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1998__8_3_a1/
%G en
%F JAC_1998__8_3_a1
Doran, William F.IV. A new plethysm formula for symmetric functions. Journal of Algebraic Combinatorics, Tome 8 (1998) no. 3, pp. 253-272. http://geodesic.mathdoc.fr/item/JAC_1998__8_3_a1/