Distance-regular graphs with $c_i=b_{d-i}$ and antipodal double covers
Journal of Algebraic Combinatorics, Tome 8 (1998) no. 2, pp. 127-138.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $Gamma$ be a distance-regular graph of diameter $d$ and valency $k > 2$. Suppose there exists an integer $s$ with $dle2s$ such that $c _{ i } = b _{ d-i }$ for all 1 $leiles$. Then $Gamma$ is an antipodal double cover.
Keywords: distance-regular graph, antipodal double cover, box, brox
@article{JAC_1998__8_2_a6,
     author = {Araya, Makoto and Hiraki, Akira},
     title = {Distance-regular graphs with $c_i=b_{d-i}$ and antipodal double covers},
     journal = {Journal of Algebraic Combinatorics},
     pages = {127--138},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a6/}
}
TY  - JOUR
AU  - Araya, Makoto
AU  - Hiraki, Akira
TI  - Distance-regular graphs with $c_i=b_{d-i}$ and antipodal double covers
JO  - Journal of Algebraic Combinatorics
PY  - 1998
SP  - 127
EP  - 138
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a6/
LA  - en
ID  - JAC_1998__8_2_a6
ER  - 
%0 Journal Article
%A Araya, Makoto
%A Hiraki, Akira
%T Distance-regular graphs with $c_i=b_{d-i}$ and antipodal double covers
%J Journal of Algebraic Combinatorics
%D 1998
%P 127-138
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a6/
%G en
%F JAC_1998__8_2_a6
Araya, Makoto; Hiraki, Akira. Distance-regular graphs with $c_i=b_{d-i}$ and antipodal double covers. Journal of Algebraic Combinatorics, Tome 8 (1998) no. 2, pp. 127-138. http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a6/