Vexillary elements in the hyperoctahedral group
Journal of Algebraic Combinatorics, Tome 8 (1998) no. 2, pp. 139-152.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In analogy with the symmetric group, we define the vexillary elements in the hyperoctahedral group to be those for which the Stanley symmetric function is a single Schur Q-function. We show that the vexillary elements can be again determined by pattern avoidance conditions. These results can be extended to include the root systems of types A, B, C, and D. Finally, we give an algorithm for multiplication of Schur Q-functions with a superfied Schur function and a method for determining the shape of a vexillary signed permutation using jeu de taquin.
Keywords: vexillary, Stanley symmetric function, reduced word, hyperoctahedral group
@article{JAC_1998__8_2_a5,
     author = {Billey, Sara and Kai Lam, Tao},
     title = {Vexillary elements in the hyperoctahedral group},
     journal = {Journal of Algebraic Combinatorics},
     pages = {139--152},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a5/}
}
TY  - JOUR
AU  - Billey, Sara
AU  - Kai Lam, Tao
TI  - Vexillary elements in the hyperoctahedral group
JO  - Journal of Algebraic Combinatorics
PY  - 1998
SP  - 139
EP  - 152
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a5/
LA  - en
ID  - JAC_1998__8_2_a5
ER  - 
%0 Journal Article
%A Billey, Sara
%A Kai Lam, Tao
%T Vexillary elements in the hyperoctahedral group
%J Journal of Algebraic Combinatorics
%D 1998
%P 139-152
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a5/
%G en
%F JAC_1998__8_2_a5
Billey, Sara; Kai Lam, Tao. Vexillary elements in the hyperoctahedral group. Journal of Algebraic Combinatorics, Tome 8 (1998) no. 2, pp. 139-152. http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a5/