Combinatorial statistics on alternating permutations
Journal of Algebraic Combinatorics, Tome 8 (1998) no. 2, pp. 169-191.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider two combinatorial statistics on permutations. One is the genus. The other, [^$(des)$] widehattextdes , is defined for alternating permutations, as the sum of the number of descents in the subwords formed by the peaks and the valleys. We investigate the distribution of [^$(des)$] widehattextdes on genus zero permutations and Baxter permutations. Our $q$-enumerative results relate the [^$(des)$] widehattextdes statistic to lattice path enumeration, the rank generating function and characteristic polynomial of noncrossing partition lattices, and polytopes obtained as face-figures of the associahedron.
Keywords: lattice path, permutation, associahedron, Catalan, schröder
@article{JAC_1998__8_2_a2,
     author = {Dulucq, Serge and Simion, Rodica},
     title = {Combinatorial statistics on alternating permutations},
     journal = {Journal of Algebraic Combinatorics},
     pages = {169--191},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a2/}
}
TY  - JOUR
AU  - Dulucq, Serge
AU  - Simion, Rodica
TI  - Combinatorial statistics on alternating permutations
JO  - Journal of Algebraic Combinatorics
PY  - 1998
SP  - 169
EP  - 191
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a2/
LA  - en
ID  - JAC_1998__8_2_a2
ER  - 
%0 Journal Article
%A Dulucq, Serge
%A Simion, Rodica
%T Combinatorial statistics on alternating permutations
%J Journal of Algebraic Combinatorics
%D 1998
%P 169-191
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a2/
%G en
%F JAC_1998__8_2_a2
Dulucq, Serge; Simion, Rodica. Combinatorial statistics on alternating permutations. Journal of Algebraic Combinatorics, Tome 8 (1998) no. 2, pp. 169-191. http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a2/