On the Betti numbers of chessboard complexes
Journal of Algebraic Combinatorics, Tome 8 (1998) no. 2, pp. 193-203.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we study the Betti numbers of a type of simplicial complex known as a chessboard complex. We obtain a formula for their Betti numbers as a sum of terms involving partitions. This formula allows us to determine which is the first nonvanishing Betti number (aside from the 0-th Betti number). We can therefore settle certain cases of a conjecture of Björner, Lovász, Vre $cacute$ica, and $Zcaron$ivaljevi $cacute$ in [2]. Our formula also shows that all eigenvalues of the Laplacians of the simplicial complexes are integers, and it gives a formula (involving partitions) for the multiplicities of the eigenvalues.
Keywords: chessboard complex, Laplacian, symmetric group, representation, connectivity, Betti number
@article{JAC_1998__8_2_a1,
     author = {Friedman, Joel and Hanlon, Phil},
     title = {On the {Betti} numbers of chessboard complexes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {193--203},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a1/}
}
TY  - JOUR
AU  - Friedman, Joel
AU  - Hanlon, Phil
TI  - On the Betti numbers of chessboard complexes
JO  - Journal of Algebraic Combinatorics
PY  - 1998
SP  - 193
EP  - 203
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a1/
LA  - en
ID  - JAC_1998__8_2_a1
ER  - 
%0 Journal Article
%A Friedman, Joel
%A Hanlon, Phil
%T On the Betti numbers of chessboard complexes
%J Journal of Algebraic Combinatorics
%D 1998
%P 193-203
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a1/
%G en
%F JAC_1998__8_2_a1
Friedman, Joel; Hanlon, Phil. On the Betti numbers of chessboard complexes. Journal of Algebraic Combinatorics, Tome 8 (1998) no. 2, pp. 193-203. http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a1/