On Cayley graphs of abelian groups
Journal of Algebraic Combinatorics, Tome 8 (1998) no. 2, pp. 205-215.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let G be a finite Abelian group and $Cay(G, S)$ the Cayley (di)-graph of G with respect to S, and let A = Aut $Cay(G, S)$ and A1 the stabilizer of 1 in A. In this paper, we first prove that if A1 is unfaithful on S then S contains a coset of some nontrivial subgroup of G, and then characterize $Cay(G, S)$ if AS contains the alternating
Keywords: Cayley graph, isomorphism, CI-subset, $m$-DCI group
@article{JAC_1998__8_2_a0,
     author = {Li, Cai Heng},
     title = {On {Cayley} graphs of abelian groups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {205--215},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a0/}
}
TY  - JOUR
AU  - Li, Cai Heng
TI  - On Cayley graphs of abelian groups
JO  - Journal of Algebraic Combinatorics
PY  - 1998
SP  - 205
EP  - 215
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a0/
LA  - en
ID  - JAC_1998__8_2_a0
ER  - 
%0 Journal Article
%A Li, Cai Heng
%T On Cayley graphs of abelian groups
%J Journal of Algebraic Combinatorics
%D 1998
%P 205-215
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a0/
%G en
%F JAC_1998__8_2_a0
Li, Cai Heng. On Cayley graphs of abelian groups. Journal of Algebraic Combinatorics, Tome 8 (1998) no. 2, pp. 205-215. http://geodesic.mathdoc.fr/item/JAC_1998__8_2_a0/