Homomorphisms of edge-colored graphs and Coxeter groups
Journal of Algebraic Combinatorics, Tome 8 (1998) no. 1, pp. 5-13.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G _{1} = ( V _{1} , E _{1} )and G _2 = ( V _2 , E _2 )$ G_1 = (V_1 ,E_1 )text and G_2 = (V_2 ,E_2 ) be two edge-colored graphs (without multiple edges or loops). A $homomorphism$ is a mapping $ V _{1} \textregistered V _{2}$ V_1 $\mapsto V$_2 for which, for every pair of adjacent vertices $u$ and $v$ of $G _{1}, \varphi( u)$ and $\varphi$(v) are adjacent in $G _{2}$ and the color of the edge $\varphi$(u) $\varphi$(v) is the same as that of the edge $uv$. We prove a number of results asserting the existence of a graph $G$ , edge-colored from a set $C$, into which every member from a given class of graphs, also edge-colored from $C$, maps homomorphically.
Keywords: graph, homomorphism, Coxeter group, reflection group
@article{JAC_1998__8_1_a4,
     author = {Alon, N. and Marshall, T.H.},
     title = {Homomorphisms of edge-colored graphs and {Coxeter} groups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1998__8_1_a4/}
}
TY  - JOUR
AU  - Alon, N.
AU  - Marshall, T.H.
TI  - Homomorphisms of edge-colored graphs and Coxeter groups
JO  - Journal of Algebraic Combinatorics
PY  - 1998
SP  - 5
EP  - 13
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1998__8_1_a4/
LA  - en
ID  - JAC_1998__8_1_a4
ER  - 
%0 Journal Article
%A Alon, N.
%A Marshall, T.H.
%T Homomorphisms of edge-colored graphs and Coxeter groups
%J Journal of Algebraic Combinatorics
%D 1998
%P 5-13
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1998__8_1_a4/
%G en
%F JAC_1998__8_1_a4
Alon, N.; Marshall, T.H. Homomorphisms of edge-colored graphs and Coxeter groups. Journal of Algebraic Combinatorics, Tome 8 (1998) no. 1, pp. 5-13. http://geodesic.mathdoc.fr/item/JAC_1998__8_1_a4/