Vertex-transitive non-Cayley graphs with arbitrarily large vertex-stabilizer
Journal of Algebraic Combinatorics, Tome 8 (1998) no. 1, pp. 29-38.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A construction is given for an infinite family p $2 ^{2 ^{ n} + 2}$ p 2^2^n + 2 . The construction uses Sierpinski"s gasket to produce generating permutations for the vertex-stabilizer (a large 2-group).
Keywords: symmetric graph, vertex-transitive, arc-transitive
@article{JAC_1998__8_1_a2,
     author = {Conder, Marston D.E. and Walker, Cameron G.},
     title = {Vertex-transitive {non-Cayley} graphs with arbitrarily large vertex-stabilizer},
     journal = {Journal of Algebraic Combinatorics},
     pages = {29--38},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1998__8_1_a2/}
}
TY  - JOUR
AU  - Conder, Marston D.E.
AU  - Walker, Cameron G.
TI  - Vertex-transitive non-Cayley graphs with arbitrarily large vertex-stabilizer
JO  - Journal of Algebraic Combinatorics
PY  - 1998
SP  - 29
EP  - 38
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1998__8_1_a2/
LA  - en
ID  - JAC_1998__8_1_a2
ER  - 
%0 Journal Article
%A Conder, Marston D.E.
%A Walker, Cameron G.
%T Vertex-transitive non-Cayley graphs with arbitrarily large vertex-stabilizer
%J Journal of Algebraic Combinatorics
%D 1998
%P 29-38
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1998__8_1_a2/
%G en
%F JAC_1998__8_1_a2
Conder, Marston D.E.; Walker, Cameron G. Vertex-transitive non-Cayley graphs with arbitrarily large vertex-stabilizer. Journal of Algebraic Combinatorics, Tome 8 (1998) no. 1, pp. 29-38. http://geodesic.mathdoc.fr/item/JAC_1998__8_1_a2/