Elementary proof of MacMahon's conjecture
Journal of Algebraic Combinatorics, Tome 7 (1998) no. 3, pp. 253-257.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Major Percy A. MacMahon"s first paper on plane partitions [4] included a conjectured generating function for symmetric plane partitions. This conjecture was proven almost simultaneously by George Andrews and Ian Macdonald, Andrews using the machinery of basic hypergeometric series [1] and Macdonald employing his knowledge of symmetric functions [3]. The purpose of this paper is to simplify Macdonald"s proof by providing a direct, inductive proof of his formula which expresses the sum of Schur functions whose partitions fit inside a rectangular box as a ratio of determinants.
Keywords: plane partition, symmetric plane partition, Schur function
@article{JAC_1998__7_3_a4,
     author = {Bressoud, David M.},
     title = {Elementary proof of {MacMahon's} conjecture},
     journal = {Journal of Algebraic Combinatorics},
     pages = {253--257},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1998__7_3_a4/}
}
TY  - JOUR
AU  - Bressoud, David M.
TI  - Elementary proof of MacMahon's conjecture
JO  - Journal of Algebraic Combinatorics
PY  - 1998
SP  - 253
EP  - 257
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1998__7_3_a4/
LA  - en
ID  - JAC_1998__7_3_a4
ER  - 
%0 Journal Article
%A Bressoud, David M.
%T Elementary proof of MacMahon's conjecture
%J Journal of Algebraic Combinatorics
%D 1998
%P 253-257
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1998__7_3_a4/
%G en
%F JAC_1998__7_3_a4
Bressoud, David M. Elementary proof of MacMahon's conjecture. Journal of Algebraic Combinatorics, Tome 7 (1998) no. 3, pp. 253-257. http://geodesic.mathdoc.fr/item/JAC_1998__7_3_a4/