On locally projective graphs of girth 5
Journal of Algebraic Combinatorics, Tome 7 (1998) no. 3, pp. 259-283.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G @ M _{23,} or q = 4, PSL _ n (4) leqslantG( x) leqslantPGL _ n$ (4) G $\cong $M_23, textor q = 4,PSL_n (4) $\leqslant G(x) \leqslant $PGL_n (4) , and $Gamma$ contains the Wells graph on 32 vertices as a subgraph. In the latter case if, for a given n, at least one graph satisfying the conditions exists then there is a universal graph $W(n)$ of which all other graphs for this n are quotients. The graph $W(3)$ satisfies the conditions and has $2 ^{20}$ vertices.
Classification : [15])
Keywords: locally projective graph, graph of girth 5, 2-arc-transitive graph
@article{JAC_1998__7_3_a3,
     author = {Ivanov, A.A. and Praeger, Cheryl E.},
     title = {On locally projective graphs of girth 5},
     journal = {Journal of Algebraic Combinatorics},
     pages = {259--283},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1998__7_3_a3/}
}
TY  - JOUR
AU  - Ivanov, A.A.
AU  - Praeger, Cheryl E.
TI  - On locally projective graphs of girth 5
JO  - Journal of Algebraic Combinatorics
PY  - 1998
SP  - 259
EP  - 283
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1998__7_3_a3/
LA  - en
ID  - JAC_1998__7_3_a3
ER  - 
%0 Journal Article
%A Ivanov, A.A.
%A Praeger, Cheryl E.
%T On locally projective graphs of girth 5
%J Journal of Algebraic Combinatorics
%D 1998
%P 259-283
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1998__7_3_a3/
%G en
%F JAC_1998__7_3_a3
Ivanov, A.A.; Praeger, Cheryl E. On locally projective graphs of girth 5. Journal of Algebraic Combinatorics, Tome 7 (1998) no. 3, pp. 259-283. http://geodesic.mathdoc.fr/item/JAC_1998__7_3_a3/