The enumeration of fully commutative elements of Coxeter groups
Journal of Algebraic Combinatorics, Tome 7 (1998) no. 3, pp. 291-320.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A Coxeter group element w is fully commutative if any reduced expression for w can be obtained from any other via the interchange of commuting generators. For example, in the symmetric group of degree n, the number of fully commutative elements is the nth Catalan number. The Coxeter groups with finitely many fully commutative elements can be arranged into seven infinite families A $_{n}$, B $_{n}$, D $_{n}$, E $_{n}$,F $_{n}$, H $_{n}$ and I $_{2}(m)$. For each family, we provide explicit generating functions for the number of fully commutative elements and the number of fully commutative involutions; in each case, the generating function is algebraic.
Keywords: Coxeter group, reduced word, braid relation
@article{JAC_1998__7_3_a1,
     author = {Stembridge, John R.},
     title = {The enumeration of fully commutative elements of {Coxeter} groups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {291--320},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1998__7_3_a1/}
}
TY  - JOUR
AU  - Stembridge, John R.
TI  - The enumeration of fully commutative elements of Coxeter groups
JO  - Journal of Algebraic Combinatorics
PY  - 1998
SP  - 291
EP  - 320
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1998__7_3_a1/
LA  - en
ID  - JAC_1998__7_3_a1
ER  - 
%0 Journal Article
%A Stembridge, John R.
%T The enumeration of fully commutative elements of Coxeter groups
%J Journal of Algebraic Combinatorics
%D 1998
%P 291-320
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1998__7_3_a1/
%G en
%F JAC_1998__7_3_a1
Stembridge, John R. The enumeration of fully commutative elements of Coxeter groups. Journal of Algebraic Combinatorics, Tome 7 (1998) no. 3, pp. 291-320. http://geodesic.mathdoc.fr/item/JAC_1998__7_3_a1/