On distance-regular graphs with height two. II
Journal of Algebraic Combinatorics, Tome 7 (1998) no. 2, pp. 197-220.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $d \geqslant 3$ d $\geqslant 3$ and height $h = 2$ h = 2 , where $h = m$ax${ i: p _{ d, i} ^{ d} \textonesuperior 0}$ h = max{ i:p_d,i^d $\ne 0$} . Suppose that for every G $_{ d}$ ( a) $\Gamma $_d $(\alpha )$ , the induced subgraph on G $_{ d}$ ( a) Ç G $_{2}$ ( b) $\Gamma $_d $(\alpha ) \cap \Gamma $_2 $(\beta )$ is isomorphic to a complete multipartite graph $K _{ t \times 2}$ K_t $\times 2$ with $t \geqslant 2$ t $\geqslant 2$ . Then $d = 4$ d = 4 and $J$(10,4) begingathered $J(10,4) \hfill \\ \hfill $ endgathered .
Keywords: distance-regular graph, height, Johnson graph, complete multipartite graph
@article{JAC_1998__7_2_a0,
     author = {Tomiyama, Masato},
     title = {On distance-regular graphs with height two. {II}},
     journal = {Journal of Algebraic Combinatorics},
     pages = {197--220},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1998__7_2_a0/}
}
TY  - JOUR
AU  - Tomiyama, Masato
TI  - On distance-regular graphs with height two. II
JO  - Journal of Algebraic Combinatorics
PY  - 1998
SP  - 197
EP  - 220
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1998__7_2_a0/
LA  - en
ID  - JAC_1998__7_2_a0
ER  - 
%0 Journal Article
%A Tomiyama, Masato
%T On distance-regular graphs with height two. II
%J Journal of Algebraic Combinatorics
%D 1998
%P 197-220
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1998__7_2_a0/
%G en
%F JAC_1998__7_2_a0
Tomiyama, Masato. On distance-regular graphs with height two. II. Journal of Algebraic Combinatorics, Tome 7 (1998) no. 2, pp. 197-220. http://geodesic.mathdoc.fr/item/JAC_1998__7_2_a0/