The structure of nonthin irreducible $T$-modules of endpoint 1: Ladder bases and classical parameters
Journal of Algebraic Combinatorics, Tome 7 (1998) no. 1, pp. 53-75.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Building on the work of Terwilliger, we find the structure of nonthin irreducible T-modules of endpoint 1 for P- and Q-polynomial association schemes with classical parameters. The isomorphism class of such a given module is determined by the intersection numbers of the scheme and one additional parameter which must be an eigenvalue for the first subconstituent graph. We show that these modules always have what we call a ladder basis, and find the structure explicitly for the bilinear, Hermitean, and alternating forms schemes.
Keywords: association scheme, Terwilliger algebra
@article{JAC_1998__7_1_a2,
     author = {Hobart, S. and Ito, T.},
     title = {The structure of nonthin irreducible $T$-modules of endpoint 1: {Ladder} bases and classical parameters},
     journal = {Journal of Algebraic Combinatorics},
     pages = {53--75},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1998__7_1_a2/}
}
TY  - JOUR
AU  - Hobart, S.
AU  - Ito, T.
TI  - The structure of nonthin irreducible $T$-modules of endpoint 1: Ladder bases and classical parameters
JO  - Journal of Algebraic Combinatorics
PY  - 1998
SP  - 53
EP  - 75
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1998__7_1_a2/
LA  - en
ID  - JAC_1998__7_1_a2
ER  - 
%0 Journal Article
%A Hobart, S.
%A Ito, T.
%T The structure of nonthin irreducible $T$-modules of endpoint 1: Ladder bases and classical parameters
%J Journal of Algebraic Combinatorics
%D 1998
%P 53-75
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1998__7_1_a2/
%G en
%F JAC_1998__7_1_a2
Hobart, S.; Ito, T. The structure of nonthin irreducible $T$-modules of endpoint 1: Ladder bases and classical parameters. Journal of Algebraic Combinatorics, Tome 7 (1998) no. 1, pp. 53-75. http://geodesic.mathdoc.fr/item/JAC_1998__7_1_a2/