Difference sets with $n=2p^m$
Journal of Algebraic Combinatorics, Tome 7 (1998) no. 1, pp. 77-89.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let D be a (v,k, $lambda$) difference set over an abelian group G with even n = k - $lambda$. Assume that t $isin$ N satisfies the congruences t $equiv$ q $_{i} ^{fi}$ (mod $exp(G))$ for each prime divisor q $_{i}$ of n/2 and some integer f $_{i}$. In [4] it was shown that t is a multiplier of D provided that n > $lambda$, (n/2, $lambda$) = 1 and (n/2, v) = 1. In this paper we show that the condition n > $lambda$ may be removed. As a corollary we obtain that in the case of n= 2p $^{a}$ when p is a prime, p should be a multiplier of D. This answers an open question mentioned in [2].
Keywords: difference set, abelian group
@article{JAC_1998__7_1_a1,
     author = {Muzychuk, Mikhail},
     title = {Difference sets with $n=2p^m$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {77--89},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1998__7_1_a1/}
}
TY  - JOUR
AU  - Muzychuk, Mikhail
TI  - Difference sets with $n=2p^m$
JO  - Journal of Algebraic Combinatorics
PY  - 1998
SP  - 77
EP  - 89
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1998__7_1_a1/
LA  - en
ID  - JAC_1998__7_1_a1
ER  - 
%0 Journal Article
%A Muzychuk, Mikhail
%T Difference sets with $n=2p^m$
%J Journal of Algebraic Combinatorics
%D 1998
%P 77-89
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1998__7_1_a1/
%G en
%F JAC_1998__7_1_a1
Muzychuk, Mikhail. Difference sets with $n=2p^m$. Journal of Algebraic Combinatorics, Tome 7 (1998) no. 1, pp. 77-89. http://geodesic.mathdoc.fr/item/JAC_1998__7_1_a1/