Reduced words and plane partitions
Journal of Algebraic Combinatorics, Tome 6 (1997) no. 4, pp. 311-319.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $w _{0}$ be the element of maximal length in thesymmetric group $S _{ n }$, and let $Red( w _{0})$ bethe set of all reduced words for $w _{0}$. We prove the identity å $_{( a $_1$ , a $_2$ , \frac{1}{4} ) \~I Red( w $_0$ )} ( x + a _{1} )( x + a _{2} )$ frac14 = $( _{2} ^{ n} )$! Õ $_{1 \leqslant i j \leqslant n} \frac2 x + i + j - 1 i + j - 1$ , sumlimits_(a_1 ,a_2 , $\ldots ) \in Red(w_0 )$ (x + a_1 )(x + a_2 ) $\cdots = \left( {_2^n } \right)$!prodlimits_$1 \leqslant $i j $\leqslant n$ frac2x + i + j - 1i + j - 1 , which generalizes Stanley's [20] formula forthe cardinality of $Red( w _{0})$, and Macdonald's [11] formula å $a _{1} a _{2}$ frac14 = $( _{2} ^{ n} ) ! \sum $a_1 a_2 $\cdots $= (_2^n ) ! .Our approach uses anobservation, based on a result by Wachs [21], that evaluation of certainspecializations of Schubert polynomials is essentially equivalent toenumeration of plane partitions whose parts are bounded from above. Thus,enumerative results for reduced words can be obtained from the correspondingstatements about plane partitions, and vice versa. In particular, $identity(*)$ follows from Proctor's [14] formula for the number of planepartitions of a staircase shape, with bounded largest part.Similar results are obtained for other permutations and shapes; $q$-analogues are also given.
Keywords: reduced word, plane partition, Schubert polynomial
@article{JAC_1997__6_4_a4,
     author = {Fomin, Sergey and Kirillov, Anatol N.},
     title = {Reduced words and plane partitions},
     journal = {Journal of Algebraic Combinatorics},
     pages = {311--319},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1997__6_4_a4/}
}
TY  - JOUR
AU  - Fomin, Sergey
AU  - Kirillov, Anatol N.
TI  - Reduced words and plane partitions
JO  - Journal of Algebraic Combinatorics
PY  - 1997
SP  - 311
EP  - 319
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1997__6_4_a4/
LA  - en
ID  - JAC_1997__6_4_a4
ER  - 
%0 Journal Article
%A Fomin, Sergey
%A Kirillov, Anatol N.
%T Reduced words and plane partitions
%J Journal of Algebraic Combinatorics
%D 1997
%P 311-319
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1997__6_4_a4/
%G en
%F JAC_1997__6_4_a4
Fomin, Sergey; Kirillov, Anatol N. Reduced words and plane partitions. Journal of Algebraic Combinatorics, Tome 6 (1997) no. 4, pp. 311-319. http://geodesic.mathdoc.fr/item/JAC_1997__6_4_a4/