The structure of trivalent graphs with minimal eigenvalue gap
Journal of Algebraic Combinatorics, Tome 6 (1997) no. 4, pp. 321-329.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G$ be a connected trivalent graph on $n$vertices ( $nge$10) such that among all connected trivalentgraphs on $n$ vertices, $G$ has the largest possiblesecond eigenvalue. We show that $G$ must be reduced path-like, i.e. $G$ must be of the form: where theends are one of the following:(the right-hand end block is the mirror image of one of the blocks shown)and the middle blocks are one of the following: This partially solves a conjecture implicit in a paper of Bussemaker, $Ccaron$obelji $cacute$, Cvetkovi $cacute$, and Seidel [3].
Keywords: trivalent graph, eigenvalue
@article{JAC_1997__6_4_a3,
     author = {Guiduli, Barry},
     title = {The structure of trivalent graphs with minimal eigenvalue gap},
     journal = {Journal of Algebraic Combinatorics},
     pages = {321--329},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1997__6_4_a3/}
}
TY  - JOUR
AU  - Guiduli, Barry
TI  - The structure of trivalent graphs with minimal eigenvalue gap
JO  - Journal of Algebraic Combinatorics
PY  - 1997
SP  - 321
EP  - 329
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1997__6_4_a3/
LA  - en
ID  - JAC_1997__6_4_a3
ER  - 
%0 Journal Article
%A Guiduli, Barry
%T The structure of trivalent graphs with minimal eigenvalue gap
%J Journal of Algebraic Combinatorics
%D 1997
%P 321-329
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1997__6_4_a3/
%G en
%F JAC_1997__6_4_a3
Guiduli, Barry. The structure of trivalent graphs with minimal eigenvalue gap. Journal of Algebraic Combinatorics, Tome 6 (1997) no. 4, pp. 321-329. http://geodesic.mathdoc.fr/item/JAC_1997__6_4_a3/