Distance-regular graphs with strongly regular subconstituents
Journal of Algebraic Combinatorics, Tome 6 (1997) no. 3, pp. 247-252.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In [3] Cameron et al. classified strongly regular graphs with strongly regular subconstituents. Here we prove a theorem which implies that distance-regular graphs with strongly regular subconstituents are precisely the Taylor graphs and graphs with $a _{1} = 0$ and $a_{i} isin{0,1}$ for $i = 2,\dots , d$.
Keywords: distance-regular graph, strongly regular graph, association scheme
@article{JAC_1997__6_3_a5,
     author = {Kasikova, Anna},
     title = {Distance-regular graphs with strongly regular subconstituents},
     journal = {Journal of Algebraic Combinatorics},
     pages = {247--252},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1997__6_3_a5/}
}
TY  - JOUR
AU  - Kasikova, Anna
TI  - Distance-regular graphs with strongly regular subconstituents
JO  - Journal of Algebraic Combinatorics
PY  - 1997
SP  - 247
EP  - 252
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1997__6_3_a5/
LA  - en
ID  - JAC_1997__6_3_a5
ER  - 
%0 Journal Article
%A Kasikova, Anna
%T Distance-regular graphs with strongly regular subconstituents
%J Journal of Algebraic Combinatorics
%D 1997
%P 247-252
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1997__6_3_a5/
%G en
%F JAC_1997__6_3_a5
Kasikova, Anna. Distance-regular graphs with strongly regular subconstituents. Journal of Algebraic Combinatorics, Tome 6 (1997) no. 3, pp. 247-252. http://geodesic.mathdoc.fr/item/JAC_1997__6_3_a5/