On flat flag-transitive $c.c\sp*$-geometries
Journal of Algebraic Combinatorics, Tome 6 (1997) no. 1, pp. 5-26.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study flat flag-transitive $c.c ^{*}$-geometries. We prove that, apart from one exception related to $Sym(6)$, all these geometries are gluings in the meaning of [6]. They are obtained by gluing two copies of an affine space over $GF(2)$. There are several ways of gluing two copies of the $n$-dimensional affine space over $GF(2)$. In one way, which deserves to be called the canonical one, we get a geometry with automorphism group $G = 2 ^{2 n }; L _{ n(2)}$ and covered by the truncated Coxeter complex of type $D _{2} ^{ n }$. The non-canonical ways give us geometries with smaller automorphism group $( Gle2 ^{2 n }; (2 ^{ n-1}) n)$ and which seldom (never ?) can be obtained as quotients of truncated Coxeter complexes.
Keywords: diagram geometry, semi-biplane, amalgam of group
@article{JAC_1997__6_1_a4,
     author = {Baumeister, Barbara and Pasini, Antonio},
     title = {On flat flag-transitive $c.c\sp*$-geometries},
     journal = {Journal of Algebraic Combinatorics},
     pages = {5--26},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1997__6_1_a4/}
}
TY  - JOUR
AU  - Baumeister, Barbara
AU  - Pasini, Antonio
TI  - On flat flag-transitive $c.c\sp*$-geometries
JO  - Journal of Algebraic Combinatorics
PY  - 1997
SP  - 5
EP  - 26
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1997__6_1_a4/
LA  - en
ID  - JAC_1997__6_1_a4
ER  - 
%0 Journal Article
%A Baumeister, Barbara
%A Pasini, Antonio
%T On flat flag-transitive $c.c\sp*$-geometries
%J Journal of Algebraic Combinatorics
%D 1997
%P 5-26
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1997__6_1_a4/
%G en
%F JAC_1997__6_1_a4
Baumeister, Barbara; Pasini, Antonio. On flat flag-transitive $c.c\sp*$-geometries. Journal of Algebraic Combinatorics, Tome 6 (1997) no. 1, pp. 5-26. http://geodesic.mathdoc.fr/item/JAC_1997__6_1_a4/