Flocks of infinite hyperbolic quadrics
Journal of Algebraic Combinatorics, Tome 6 (1997) no. 1, pp. 27-51.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $K$ be a field containing a nonsquare $F = K$( Ö g ) F = K$left( sqrtgamma right)$ a quadratic extension. Let ( K( \"O{ g} ) $^* ) ^ s+ 1 = K ^ -$ \left( {K$left( {\sqrt \gamma } \right)$^* right)^sigma+ 1 = K^ - , a construction is given which produces large numbers of infinite nearfield and non nearfield flocks of an infinite hyperbolic quadric in $PG(3, K)$.
Keywords: flock, quadric, bol translation plane
@article{JAC_1997__6_1_a3,
     author = {Johnson, Norman L.},
     title = {Flocks of infinite hyperbolic quadrics},
     journal = {Journal of Algebraic Combinatorics},
     pages = {27--51},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1997__6_1_a3/}
}
TY  - JOUR
AU  - Johnson, Norman L.
TI  - Flocks of infinite hyperbolic quadrics
JO  - Journal of Algebraic Combinatorics
PY  - 1997
SP  - 27
EP  - 51
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1997__6_1_a3/
LA  - en
ID  - JAC_1997__6_1_a3
ER  - 
%0 Journal Article
%A Johnson, Norman L.
%T Flocks of infinite hyperbolic quadrics
%J Journal of Algebraic Combinatorics
%D 1997
%P 27-51
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1997__6_1_a3/
%G en
%F JAC_1997__6_1_a3
Johnson, Norman L. Flocks of infinite hyperbolic quadrics. Journal of Algebraic Combinatorics, Tome 6 (1997) no. 1, pp. 27-51. http://geodesic.mathdoc.fr/item/JAC_1997__6_1_a3/