An algebra associated with a spin model
Journal of Algebraic Combinatorics, Tome 6 (1997) no. 1, pp. 53-58.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: To each symmetric $n \times n$ matrix $W$ with non-zero complex entries, we associate a vector space $N$, consisting of certain symmetric $n \times n$ matrices. If $W$ satisfies å $_{ x = 1} ^{ n} \frac W _{ a, x} W _{ b, x} = n$ d $_{ a, b} ( a, b = 1,\dots , n)$, sumlimits_x = 1^n fracW_a,x W_b,x = $n{\delta }$_a,b (a,b = 1,$\dots ,n$), then $N$ becomes a commutative algebra under both ordinary matrix product and Hadamard product (entry-wise product), so that $N$ is the Bose-Mesner algebra of some association scheme. If $W$ satisfies the star-triangle equation: $\frac1 $Ö $n$ å $_{ x = 1} ^{ n} \frac W _{ a, x} W _{ b, x} W _{ c, x} = \frac W _{ a, b} W _{ a, c} W _{ b, c} ( a, b, c = 1,\dots , n)$, frac1$\sqrt n$ sumlimits_x = 1^n fracW_a,x W_b,x W_c,x = fracW_a,b W_a,c W_b,c (a,b,c = 1,$\dots ,n$), then $W$ belongs to $N$. This gives an algebraic proof of Jaeger's result which asserts that every spin model which defines a link invariant comes from some association scheme.
Keywords: spin model, association scheme, Bose-mesner algebra
@article{JAC_1997__6_1_a2,
     author = {Nomura, Kazumasa},
     title = {An algebra associated with a spin model},
     journal = {Journal of Algebraic Combinatorics},
     pages = {53--58},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1997__6_1_a2/}
}
TY  - JOUR
AU  - Nomura, Kazumasa
TI  - An algebra associated with a spin model
JO  - Journal of Algebraic Combinatorics
PY  - 1997
SP  - 53
EP  - 58
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1997__6_1_a2/
LA  - en
ID  - JAC_1997__6_1_a2
ER  - 
%0 Journal Article
%A Nomura, Kazumasa
%T An algebra associated with a spin model
%J Journal of Algebraic Combinatorics
%D 1997
%P 53-58
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1997__6_1_a2/
%G en
%F JAC_1997__6_1_a2
Nomura, Kazumasa. An algebra associated with a spin model. Journal of Algebraic Combinatorics, Tome 6 (1997) no. 1, pp. 53-58. http://geodesic.mathdoc.fr/item/JAC_1997__6_1_a2/