Cycle-closed permutation groups
Journal of Algebraic Combinatorics, Tome 5 (1996) no. 4, pp. 315-322.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A finite permutation group is cycle-closed if it contains all the cycles of all of its elements. It is shown by elementary means that the cycle-closed groups are precisely the direct products of symmetric groups and cyclic groups of prime order. Moreover, from any group, a cycle-closed group is reached in at most three steps, a step consisting of adding all cycles of all group elements. For infinite groups, there are several possible generalisations. Some analogues of the finite result are proved.
Keywords: permutation group, cycle, Hopf algebra, Fourier series
@article{JAC_1996__5_4_a4,
     author = {Cameron, Peter J.},
     title = {Cycle-closed permutation groups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {315--322},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1996__5_4_a4/}
}
TY  - JOUR
AU  - Cameron, Peter J.
TI  - Cycle-closed permutation groups
JO  - Journal of Algebraic Combinatorics
PY  - 1996
SP  - 315
EP  - 322
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1996__5_4_a4/
LA  - en
ID  - JAC_1996__5_4_a4
ER  - 
%0 Journal Article
%A Cameron, Peter J.
%T Cycle-closed permutation groups
%J Journal of Algebraic Combinatorics
%D 1996
%P 315-322
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1996__5_4_a4/
%G en
%F JAC_1996__5_4_a4
Cameron, Peter J. Cycle-closed permutation groups. Journal of Algebraic Combinatorics, Tome 5 (1996) no. 4, pp. 315-322. http://geodesic.mathdoc.fr/item/JAC_1996__5_4_a4/