Asymmetric combinatorially-regular maps
Journal of Algebraic Combinatorics, Tome 5 (1996) no. 4, pp. 323-328.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It is shown that for every $g\geq 3$, there exists a combinatorially regular map $M$ of type (3, 7) on a closed orientable surface of genus $g$, such that $M$ has trivial symmetry group. Such maps are constructed from Schreier coset graphs corresponding to permutation representations of the (2, 3, 7) triangle group. 1991 Mathematics Subject Classification: 57M15.
Classification : 57M15
@article{JAC_1996__5_4_a3,
     author = {Conder, Marston},
     title = {Asymmetric combinatorially-regular maps},
     journal = {Journal of Algebraic Combinatorics},
     pages = {323--328},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1996__5_4_a3/}
}
TY  - JOUR
AU  - Conder, Marston
TI  - Asymmetric combinatorially-regular maps
JO  - Journal of Algebraic Combinatorics
PY  - 1996
SP  - 323
EP  - 328
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1996__5_4_a3/
LA  - en
ID  - JAC_1996__5_4_a3
ER  - 
%0 Journal Article
%A Conder, Marston
%T Asymmetric combinatorially-regular maps
%J Journal of Algebraic Combinatorics
%D 1996
%P 323-328
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1996__5_4_a3/
%G en
%F JAC_1996__5_4_a3
Conder, Marston. Asymmetric combinatorially-regular maps. Journal of Algebraic Combinatorics, Tome 5 (1996) no. 4, pp. 323-328. http://geodesic.mathdoc.fr/item/JAC_1996__5_4_a3/