A note on the homology of signed posets
Journal of Algebraic Combinatorics, Tome 5 (1996) no. 3, pp. 245-250.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $S$ be a signed poset in the sense of Reiner [4]. Fischer [2] defines the homology of $S$, in terms of a partial ordering $P( S)$ associated to $S$, to be the homology of a certain subcomplex of the chain complex of $P( S)$. In this paper we show that if $P( S)$ is Cohen-Macaulay and $S$ has rank $n$, then the homology of $S$ vanishes for degrees outside the interval [ n/2, $n]$.
Keywords: poset, Cohen-Macaulay, signed poset
@article{JAC_1996__5_3_a1,
     author = {Hanlon, Phil},
     title = {A note on the homology of signed posets},
     journal = {Journal of Algebraic Combinatorics},
     pages = {245--250},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1996__5_3_a1/}
}
TY  - JOUR
AU  - Hanlon, Phil
TI  - A note on the homology of signed posets
JO  - Journal of Algebraic Combinatorics
PY  - 1996
SP  - 245
EP  - 250
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1996__5_3_a1/
LA  - en
ID  - JAC_1996__5_3_a1
ER  - 
%0 Journal Article
%A Hanlon, Phil
%T A note on the homology of signed posets
%J Journal of Algebraic Combinatorics
%D 1996
%P 245-250
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1996__5_3_a1/
%G en
%F JAC_1996__5_3_a1
Hanlon, Phil. A note on the homology of signed posets. Journal of Algebraic Combinatorics, Tome 5 (1996) no. 3, pp. 245-250. http://geodesic.mathdoc.fr/item/JAC_1996__5_3_a1/