The flag-transitive $C\sb 3$-geometries of finite order
Journal of Algebraic Combinatorics, Tome 5 (1996) no. 3, pp. 251-284.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It is shown that a flag-transitive $C _{3}$-geometry of finite order $( x, y)$ with $xge$ 2 is either a finite building of type $C _{3}$ (and hence the classical polar space for a 6-dimensional symplectic space, a 6-dimensional orthogonal space of plus type, a 6- or 7-dimensional hermitian space, a 7-dimensional orthogonal space, or an 8-dimensional orthogonal space of minus type) or the sporadic $A7$-geometry with 7 points.
Keywords: incidence geometry, C3-geometry, flag-transitivity, generalized quadrangle
@article{JAC_1996__5_3_a0,
     author = {Yoshiara, Satoshi},
     title = {The flag-transitive $C\sb 3$-geometries of finite order},
     journal = {Journal of Algebraic Combinatorics},
     pages = {251--284},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1996__5_3_a0/}
}
TY  - JOUR
AU  - Yoshiara, Satoshi
TI  - The flag-transitive $C\sb 3$-geometries of finite order
JO  - Journal of Algebraic Combinatorics
PY  - 1996
SP  - 251
EP  - 284
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1996__5_3_a0/
LA  - en
ID  - JAC_1996__5_3_a0
ER  - 
%0 Journal Article
%A Yoshiara, Satoshi
%T The flag-transitive $C\sb 3$-geometries of finite order
%J Journal of Algebraic Combinatorics
%D 1996
%P 251-284
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1996__5_3_a0/
%G en
%F JAC_1996__5_3_a0
Yoshiara, Satoshi. The flag-transitive $C\sb 3$-geometries of finite order. Journal of Algebraic Combinatorics, Tome 5 (1996) no. 3, pp. 251-284. http://geodesic.mathdoc.fr/item/JAC_1996__5_3_a0/