Strong connectivity of polyhedral complexes
Journal of Algebraic Combinatorics, Tome 5 (1996) no. 2, pp. 117-125.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A classical theorem of Robbins states that the edges of a graph may be oriented, in such a way that an oriented path exists between any source and destination, if and only if the graph is both connected and two-connected (it cannot be disconnected by the removal of an edge). In this paper, an algebraic version of Robbins" result becomes a lemma on Hilbert bases for free abelian groups, which is then applied to generalize his theorem to higher dimensional complexes. An application to cycle bases for graphs is given, and various examples are presented.
Keywords: strong connectivity, Hilbert basis, homology
@article{JAC_1996__5_2_a4,
     author = {Greenberg, Peter and Loebl, Martin},
     title = {Strong connectivity of polyhedral complexes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {117--125},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1996__5_2_a4/}
}
TY  - JOUR
AU  - Greenberg, Peter
AU  - Loebl, Martin
TI  - Strong connectivity of polyhedral complexes
JO  - Journal of Algebraic Combinatorics
PY  - 1996
SP  - 117
EP  - 125
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1996__5_2_a4/
LA  - en
ID  - JAC_1996__5_2_a4
ER  - 
%0 Journal Article
%A Greenberg, Peter
%A Loebl, Martin
%T Strong connectivity of polyhedral complexes
%J Journal of Algebraic Combinatorics
%D 1996
%P 117-125
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1996__5_2_a4/
%G en
%F JAC_1996__5_2_a4
Greenberg, Peter; Loebl, Martin. Strong connectivity of polyhedral complexes. Journal of Algebraic Combinatorics, Tome 5 (1996) no. 2, pp. 117-125. http://geodesic.mathdoc.fr/item/JAC_1996__5_2_a4/