Non-Stanley bounds for network reliability
Journal of Algebraic Combinatorics, Tome 5 (1996) no. 1, pp. 13-36.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Suppose that each edge of a connected graph $G$ of order $n$ is independently operational with probability $p$; the $reliability$ of $G$ is the probability that the operational edges form a spanning connected subgraph. A useful expansion of the reliability is as $p ^{ n - 1}$ å $_{ i = 0} ^{ d} H _{ i} ( 1 - p ) ^{ i}$ p^n - 1 sumnolimits_i = 0^d H_i $left( 1 - p right)$^i } , and the Ball-Provan method for bounding reliability relies on Stanley's combinatorial bounds for the $H$-vectors of shellable complexes. We prove some new bounds here for the $H$-vectors arising from graphs, and the results here shed light on the problem of characterizing the $H$-vectors of matroids.$
Keywords: network reliability, H-vector, shellable complex, matroid, graph polynomial
@article{JAC_1996__5_1_a3,
     author = {Brown, Jason I. and Colbourn, Charles J.},
     title = {Non-Stanley bounds for network reliability},
     journal = {Journal of Algebraic Combinatorics},
     pages = {13--36},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1996__5_1_a3/}
}
TY  - JOUR
AU  - Brown, Jason I.
AU  - Colbourn, Charles J.
TI  - Non-Stanley bounds for network reliability
JO  - Journal of Algebraic Combinatorics
PY  - 1996
SP  - 13
EP  - 36
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1996__5_1_a3/
LA  - en
ID  - JAC_1996__5_1_a3
ER  - 
%0 Journal Article
%A Brown, Jason I.
%A Colbourn, Charles J.
%T Non-Stanley bounds for network reliability
%J Journal of Algebraic Combinatorics
%D 1996
%P 13-36
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1996__5_1_a3/
%G en
%F JAC_1996__5_1_a3
Brown, Jason I.; Colbourn, Charles J. Non-Stanley bounds for network reliability. Journal of Algebraic Combinatorics, Tome 5 (1996) no. 1, pp. 13-36. http://geodesic.mathdoc.fr/item/JAC_1996__5_1_a3/