On distance-regular graphs with height two
Journal of Algebraic Combinatorics, Tome 5 (1996) no. 1, pp. 57-76.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let max${ i: p _{ di} ^{ d} \textonesuperior 0 } \max $left{ i:p_di^d $\ne 0$ right} . Suppose that for every $agr$ in $Gamma$ and $beta$ in $Gamma _{d}( agr)$, the induced subgraph on $Gamma _{d}( agr) capGamma _{2}( beta)$ is a clique. Then $Gamma$ is isomorphic to the Johnson graph $J$(8, 3).
Keywords: distance-regular graph, strongly regular graph, height, clique, Johnson graph
@article{JAC_1996__5_1_a0,
     author = {Tomiyama, Masato},
     title = {On distance-regular graphs with height two},
     journal = {Journal of Algebraic Combinatorics},
     pages = {57--76},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1996__5_1_a0/}
}
TY  - JOUR
AU  - Tomiyama, Masato
TI  - On distance-regular graphs with height two
JO  - Journal of Algebraic Combinatorics
PY  - 1996
SP  - 57
EP  - 76
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1996__5_1_a0/
LA  - en
ID  - JAC_1996__5_1_a0
ER  - 
%0 Journal Article
%A Tomiyama, Masato
%T On distance-regular graphs with height two
%J Journal of Algebraic Combinatorics
%D 1996
%P 57-76
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1996__5_1_a0/
%G en
%F JAC_1996__5_1_a0
Tomiyama, Masato. On distance-regular graphs with height two. Journal of Algebraic Combinatorics, Tome 5 (1996) no. 1, pp. 57-76. http://geodesic.mathdoc.fr/item/JAC_1996__5_1_a0/