1/2-transitive graphs of order $3p$
Journal of Algebraic Combinatorics, Tome 3 (1994) no. 4, pp. 347-355.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A graph $X$ is called $vertex-transitive, edge-transitive$, or $arc-transitive$, if the automorphism group of $X$ acts transitively on the set of vertices, edges, or arcs of $X$, respectively. $X$ is said to be $1/2-transitive$, if it is vertex-transitive, edge-transitive, but not arc-transitive. In this paper we determine all 1/2-transitive graphs with $3 p$ vertices, where $p$ is an odd prime. (See Theorem 3.4.)
Keywords: 1/2-transitive graph, metacirculant, factor graph
@article{JAC_1994__3_4_a2,
     author = {Alspach, Brian and Xu, Ming-Yao},
     title = {1/2-transitive graphs of order $3p$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {347--355},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1994__3_4_a2/}
}
TY  - JOUR
AU  - Alspach, Brian
AU  - Xu, Ming-Yao
TI  - 1/2-transitive graphs of order $3p$
JO  - Journal of Algebraic Combinatorics
PY  - 1994
SP  - 347
EP  - 355
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1994__3_4_a2/
LA  - en
ID  - JAC_1994__3_4_a2
ER  - 
%0 Journal Article
%A Alspach, Brian
%A Xu, Ming-Yao
%T 1/2-transitive graphs of order $3p$
%J Journal of Algebraic Combinatorics
%D 1994
%P 347-355
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1994__3_4_a2/
%G en
%F JAC_1994__3_4_a2
Alspach, Brian; Xu, Ming-Yao. 1/2-transitive graphs of order $3p$. Journal of Algebraic Combinatorics, Tome 3 (1994) no. 4, pp. 347-355. http://geodesic.mathdoc.fr/item/JAC_1994__3_4_a2/