Duality of graded graphs
Journal of Algebraic Combinatorics, Tome 3 (1994) no. 4, pp. 357-404.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A graph is said to be graded if its vertices are divided into levels numbered by integers, so that the endpoints of any edge lie on consecutive levels. Discrete modular lattices and rooted trees are among the typical examples. The following three types of problems are of interest to us: (1) path counting in graded graphs, and related combinatorial identities;
Keywords: enumerative combinatorics, tableaux, Young diagram, differential poset, graded graph
@article{JAC_1994__3_4_a1,
     author = {Fomin, Sergey},
     title = {Duality of graded graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {357--404},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1994__3_4_a1/}
}
TY  - JOUR
AU  - Fomin, Sergey
TI  - Duality of graded graphs
JO  - Journal of Algebraic Combinatorics
PY  - 1994
SP  - 357
EP  - 404
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1994__3_4_a1/
LA  - en
ID  - JAC_1994__3_4_a1
ER  - 
%0 Journal Article
%A Fomin, Sergey
%T Duality of graded graphs
%J Journal of Algebraic Combinatorics
%D 1994
%P 357-404
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1994__3_4_a1/
%G en
%F JAC_1994__3_4_a1
Fomin, Sergey. Duality of graded graphs. Journal of Algebraic Combinatorics, Tome 3 (1994) no. 4, pp. 357-404. http://geodesic.mathdoc.fr/item/JAC_1994__3_4_a1/