Spin models on finite cyclic groups
Journal of Algebraic Combinatorics, Tome 3 (1994) no. 3, pp. 243-259.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The concept of spin model is due to V. F. R. Jones. The concept of nonsymmetric spin model, which generalizes that of the original (symmetric) spin model, is defined naturally. In this paper, we first determine the diagonal matrices $T$ satisfying the modular invariance or the quasi modular invariance property, i.e., $( PT) ^{3} = \"O{ mP ^{2} }$ (PT)^$3 = \sqrt $mP^2 or $( PT) ^{3} = m ^{\frac32} I$ (PT)^3 = m^frac32 I (respectively), for the character table $P$ of the group association scheme of a cyclic group $G$ of order $m$. Then we show that a (symmetric or nonsymmetric) spin model on $G$ is constructed from each of the matrices $T$ satisfying the modular or quasi modular invariance property.
Keywords: spin model, association scheme, cyclic group, modular invariance property, link invariant
@article{JAC_1994__3_3_a4,
     author = {Bannai, Eiichi and Bannai, Etsuko},
     title = {Spin models on finite cyclic groups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {243--259},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1994__3_3_a4/}
}
TY  - JOUR
AU  - Bannai, Eiichi
AU  - Bannai, Etsuko
TI  - Spin models on finite cyclic groups
JO  - Journal of Algebraic Combinatorics
PY  - 1994
SP  - 243
EP  - 259
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1994__3_3_a4/
LA  - en
ID  - JAC_1994__3_3_a4
ER  - 
%0 Journal Article
%A Bannai, Eiichi
%A Bannai, Etsuko
%T Spin models on finite cyclic groups
%J Journal of Algebraic Combinatorics
%D 1994
%P 243-259
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1994__3_3_a4/
%G en
%F JAC_1994__3_3_a4
Bannai, Eiichi; Bannai, Etsuko. Spin models on finite cyclic groups. Journal of Algebraic Combinatorics, Tome 3 (1994) no. 3, pp. 243-259. http://geodesic.mathdoc.fr/item/JAC_1994__3_3_a4/