Basis-transitive matroids
Journal of Algebraic Combinatorics, Tome 3 (1994) no. 3, pp. 285-290.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the problem of classifying all finite basis-transitive matroids and reduce it to the classification of the finite basis-transitive and point-primitive simple matroids (or geometric lattices, or dimensional linear spaces). Our main result shows how a basis- and point-transitive simple matroid is decomposed into a so-called supersum. In particular each block of imprimitivity bears the structure of two closely related simple matroids, and the set of blocks of imprimitivity bears the structure of a point- and basis-transitive matroid.
Keywords: matroid, geometric lattice, dimensional linear space, transitivity, automorphism group
@article{JAC_1994__3_3_a2,
     author = {Delandtsheer, Anne and Li, Huiling},
     title = {Basis-transitive matroids},
     journal = {Journal of Algebraic Combinatorics},
     pages = {285--290},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1994__3_3_a2/}
}
TY  - JOUR
AU  - Delandtsheer, Anne
AU  - Li, Huiling
TI  - Basis-transitive matroids
JO  - Journal of Algebraic Combinatorics
PY  - 1994
SP  - 285
EP  - 290
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1994__3_3_a2/
LA  - en
ID  - JAC_1994__3_3_a2
ER  - 
%0 Journal Article
%A Delandtsheer, Anne
%A Li, Huiling
%T Basis-transitive matroids
%J Journal of Algebraic Combinatorics
%D 1994
%P 285-290
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1994__3_3_a2/
%G en
%F JAC_1994__3_3_a2
Delandtsheer, Anne; Li, Huiling. Basis-transitive matroids. Journal of Algebraic Combinatorics, Tome 3 (1994) no. 3, pp. 285-290. http://geodesic.mathdoc.fr/item/JAC_1994__3_3_a2/