$q$-hypergeometric series and Macdonald functions
Journal of Algebraic Combinatorics, Tome 3 (1994) no. 3, pp. 291-305.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We derive a duality formula for two-row Macdonald functions by studying their relation with basic hypergeometric functions. We introduce two parameter vertex operators to construct a family of symmetric functions generalizing Hall-Littlewood functions. Their relation with Macdonald functions is governed by a very well-poised $q$-hypergeometric functions of type $_{4} PHgr _{3}$, for which we obtain linear transformation formulas in terms of the Jacobi theta function and the $q$-Gamma function. The transformation formulas are then used to give the duality formula and a new formula for two-row Macdonald functions in terms of the vertex operators. The Jack polynomials are also treated accordingly.
Keywords: basic hypergeometric function, vertex operator, Macdonald symmetric function, Jack symmetric function
@article{JAC_1994__3_3_a1,
     author = {Jing, Naihuan},
     title = {$q$-hypergeometric series and {Macdonald} functions},
     journal = {Journal of Algebraic Combinatorics},
     pages = {291--305},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1994__3_3_a1/}
}
TY  - JOUR
AU  - Jing, Naihuan
TI  - $q$-hypergeometric series and Macdonald functions
JO  - Journal of Algebraic Combinatorics
PY  - 1994
SP  - 291
EP  - 305
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1994__3_3_a1/
LA  - en
ID  - JAC_1994__3_3_a1
ER  - 
%0 Journal Article
%A Jing, Naihuan
%T $q$-hypergeometric series and Macdonald functions
%J Journal of Algebraic Combinatorics
%D 1994
%P 291-305
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1994__3_3_a1/
%G en
%F JAC_1994__3_3_a1
Jing, Naihuan. $q$-hypergeometric series and Macdonald functions. Journal of Algebraic Combinatorics, Tome 3 (1994) no. 3, pp. 291-305. http://geodesic.mathdoc.fr/item/JAC_1994__3_3_a1/