A construction of difference sets in high exponent 2-groups using representation theory
Journal of Algebraic Combinatorics, Tome 3 (1994) no. 2, pp. 137-151.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Nontrivial difference sets in groups of order a power of 2 are part of the family of difference sets called Menon difference sets (or Hadamard), and they have parameters ($2 ^{2 d+2}, 2 ^{2 d+1}\pm 2 ^{ d }, 2 ^{2 d }\pm 2 ^{ d }$). In the abelian case, the group has a difference set if and only if the exponent of the group is less than or equal to $2 ^{ d+2}$. In [14], the authors construct a difference set in a nonabelian group of order 64 and exponent 32. This paper generalizes that result to show that there is a difference set in a nonabelian group of order $2 ^{2 d+2}$ with exponent $2 ^{ d+3}$. We use representation theory to prove that the group has a difference set, and this shows that representation theory can be used to verify a construction similar to the use of character theory in the abelian case.
Keywords: difference set, representation theory, abelian group, nonabelian group
@article{JAC_1994__3_2_a4,
     author = {Davis, James A. and Smith, Ken},
     title = {A construction of difference sets in high exponent 2-groups using representation theory},
     journal = {Journal of Algebraic Combinatorics},
     pages = {137--151},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1994__3_2_a4/}
}
TY  - JOUR
AU  - Davis, James A.
AU  - Smith, Ken
TI  - A construction of difference sets in high exponent 2-groups using representation theory
JO  - Journal of Algebraic Combinatorics
PY  - 1994
SP  - 137
EP  - 151
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1994__3_2_a4/
LA  - en
ID  - JAC_1994__3_2_a4
ER  - 
%0 Journal Article
%A Davis, James A.
%A Smith, Ken
%T A construction of difference sets in high exponent 2-groups using representation theory
%J Journal of Algebraic Combinatorics
%D 1994
%P 137-151
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1994__3_2_a4/
%G en
%F JAC_1994__3_2_a4
Davis, James A.; Smith, Ken. A construction of difference sets in high exponent 2-groups using representation theory. Journal of Algebraic Combinatorics, Tome 3 (1994) no. 2, pp. 137-151. http://geodesic.mathdoc.fr/item/JAC_1994__3_2_a4/