$\ell\sb 1$-rigid graphs
Journal of Algebraic Combinatorics, Tome 3 (1994) no. 2, pp. 153-175.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: An $ell _{1}$-graph is a graph whose nodes can be labeled by binary vectors in such a way that the Hamming distance between the binary addresses is, up to scale, the distance in the graph between the corresponding nodes. We show that many interesting graphs are $ell _{1}$-rigid, i.e., that they admit an essentially unique such binary labeling.
Classification : 15, in, [4]), and, from, (i)
Keywords: $ell _{1}$-graph, cut cone, rigidity
@article{JAC_1994__3_2_a3,
     author = {Deza, M. and Laurent, M.},
     title = {$\ell\sb 1$-rigid graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {153--175},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1994__3_2_a3/}
}
TY  - JOUR
AU  - Deza, M.
AU  - Laurent, M.
TI  - $\ell\sb 1$-rigid graphs
JO  - Journal of Algebraic Combinatorics
PY  - 1994
SP  - 153
EP  - 175
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1994__3_2_a3/
LA  - en
ID  - JAC_1994__3_2_a3
ER  - 
%0 Journal Article
%A Deza, M.
%A Laurent, M.
%T $\ell\sb 1$-rigid graphs
%J Journal of Algebraic Combinatorics
%D 1994
%P 153-175
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1994__3_2_a3/
%G en
%F JAC_1994__3_2_a3
Deza, M.; Laurent, M. $\ell\sb 1$-rigid graphs. Journal of Algebraic Combinatorics, Tome 3 (1994) no. 2, pp. 153-175. http://geodesic.mathdoc.fr/item/JAC_1994__3_2_a3/