Completely regular designs of strength one
Journal of Algebraic Combinatorics, Tome 3 (1994) no. 2, pp. 177-185.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study a class of highly regular $t$-designs. These are the subsets of vertices of the Johnson graph which are completely regular in the sense of Delsarte [2]. In [9], Meyerowitz classified the completely regular designs having strength zero. In this paper, we determine the completely regular designs having strength one and minimum distance at least two. The approach taken here utilizes the incidence matrix of $( t+1)$-sets versus $k$-sets and is related to the representation theory of distance-regular graphs [1, 5].
Keywords: completely regular subset, equitable partition, Johnson graph, $t$-design
@article{JAC_1994__3_2_a2,
     author = {Martin, William J.},
     title = {Completely regular designs of strength one},
     journal = {Journal of Algebraic Combinatorics},
     pages = {177--185},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1994__3_2_a2/}
}
TY  - JOUR
AU  - Martin, William J.
TI  - Completely regular designs of strength one
JO  - Journal of Algebraic Combinatorics
PY  - 1994
SP  - 177
EP  - 185
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1994__3_2_a2/
LA  - en
ID  - JAC_1994__3_2_a2
ER  - 
%0 Journal Article
%A Martin, William J.
%T Completely regular designs of strength one
%J Journal of Algebraic Combinatorics
%D 1994
%P 177-185
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1994__3_2_a2/
%G en
%F JAC_1994__3_2_a2
Martin, William J. Completely regular designs of strength one. Journal of Algebraic Combinatorics, Tome 3 (1994) no. 2, pp. 177-185. http://geodesic.mathdoc.fr/item/JAC_1994__3_2_a2/