The descent monomials and a basis for the diagonally symmetric polynomials
Journal of Algebraic Combinatorics, Tome 3 (1994) no. 1, pp. 5-16.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $R( X) = Q[ x _{1}, x _{2}, \dots , x _{n}]$ be the ring of polynomials in the variables $X = { x _{1}, x _{2}, \dots , x _{n}}$ and $R*( X)$ denote the quotient of $R( X)$ by the ideal generated by the elementary symmetric functions. Given a $_{ s} ( X)$ = Õ $_{ s $_ i$ \succ s $_ i + 1 $ ( x _{ s $_1 $ x _{ s $_2 frac14 $x _{ s $_ i )$ \_\sigma (X) = \prod$nolimits_$\sigma $_i $\succ \sigma $_i + 1 (x_$\sigma $_1 x_$\sigma $_2 $\ldots $x_$\sigma $_i ) In the late 1970s I. Gessel conjectured that these monomials, called the descent monomials, are a basis for $R*( X)$. Actually, this result was known to Steinberg [10]. A. Garsia showed how it could be derived from the theory of Stanley-Reisner Rings [3]. Now let $R( X, Y)$ denote the ring of polynomials in the variables $X = { x _{1}, x _{2}, \dots , x _{n}}$ and $Y = { y _{1}, y _{2}, \dots , y _{n}}$. The diagonal action of s $P( X, Y) = P( x _{ s $_1 $ , x _{ s $_2 , frac14 , $x _{ s $_ n $ , y _{ s $_1 $ , y _{ s $_2 , frac14 , $y _{ s $_ n $ ) \sigma P(X,Y) = P(x_{\sigma _1 } ,x_{\sigma _2 } , \ldots ,x_{\sigma _n } ,y_{\sigma _1 } ,y_{\sigma _2 } , \ldots ,y_{\sigma _n } )$ Let R ^ rgr( X, Y) be the subring of R( X, Y) which is invariant under the diagonal action. Let R ^ rgr*( X, Y) denote the quotient of R ^ rgr( X, Y) by the ideal generated by the elementary symmetric functions in X and the elementary symmetric functions in Y. Recently, A. Garsia in [4] and V. Reiner in [8] showed that a collection of polynomials closely related to the descent monomials are a basis for R ^ rgr*( X, Y). In this paper, the author gives elementary proofs of both theorems by constructing algorithms that show how to expand elements of R*( X) and R ^ rgr$*( X, Y)$ in terms of their respective bases.
Keywords: descent monomial, diagonally symmetric polynomials, polynomial quotient ring
@article{JAC_1994__3_1_a3,
     author = {Allen, E.E.},
     title = {The descent monomials and a basis for the diagonally symmetric polynomials},
     journal = {Journal of Algebraic Combinatorics},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1994__3_1_a3/}
}
TY  - JOUR
AU  - Allen, E.E.
TI  - The descent monomials and a basis for the diagonally symmetric polynomials
JO  - Journal of Algebraic Combinatorics
PY  - 1994
SP  - 5
EP  - 16
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1994__3_1_a3/
LA  - en
ID  - JAC_1994__3_1_a3
ER  - 
%0 Journal Article
%A Allen, E.E.
%T The descent monomials and a basis for the diagonally symmetric polynomials
%J Journal of Algebraic Combinatorics
%D 1994
%P 5-16
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1994__3_1_a3/
%G en
%F JAC_1994__3_1_a3
Allen, E.E. The descent monomials and a basis for the diagonally symmetric polynomials. Journal of Algebraic Combinatorics, Tome 3 (1994) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/JAC_1994__3_1_a3/