Conjectures on the quotient ring by diagonal invariants
Journal of Algebraic Combinatorics, Tome 3 (1994) no. 1, pp. 17-76.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We formulate a series of conjectures (and a few theorems) on the quotient of the polynomial ring $\mathbb Q[ x _{1}$ , frac14 , $x _{ n} , y _{1}$ , frac14 , $y _{ n} ]$ mathbbQ[x_1 , $\ldots $,x_n ,y_1 , $\ldots $,y_n ] in two sets of variables by the ideal generated by all $S _{n}$ invariant polynomials without constant term. The theory of the corresponding ring in a single set of variables $X = { x _{1}, \dots , x _{n}}$ is classical. Introducing the second set of variables leads to a ring about which little is yet understood, but for which there is strong evidence of deep connections with many fundamental results of enumerative combinatorics, as well as with algebraic geometry and Lie theory.
Keywords: diagonal harmonics, invariant, Coxeter group
@article{JAC_1994__3_1_a2,
     author = {Haiman, Mark D.},
     title = {Conjectures on the quotient ring by diagonal invariants},
     journal = {Journal of Algebraic Combinatorics},
     pages = {17--76},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1994__3_1_a2/}
}
TY  - JOUR
AU  - Haiman, Mark D.
TI  - Conjectures on the quotient ring by diagonal invariants
JO  - Journal of Algebraic Combinatorics
PY  - 1994
SP  - 17
EP  - 76
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1994__3_1_a2/
LA  - en
ID  - JAC_1994__3_1_a2
ER  - 
%0 Journal Article
%A Haiman, Mark D.
%T Conjectures on the quotient ring by diagonal invariants
%J Journal of Algebraic Combinatorics
%D 1994
%P 17-76
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1994__3_1_a2/
%G en
%F JAC_1994__3_1_a2
Haiman, Mark D. Conjectures on the quotient ring by diagonal invariants. Journal of Algebraic Combinatorics, Tome 3 (1994) no. 1, pp. 17-76. http://geodesic.mathdoc.fr/item/JAC_1994__3_1_a2/