Some combinatorial properties of Schubert polynomials
Journal of Algebraic Combinatorics, Tome 2 (1993) no. 4, pp. 345-374.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Schubert polynomials were introduced by Bernstein et al. and Demazure, and were extensively developed by Lascoux, Schützenberger, Macdonald, and others. We give an explicit combinatorial interpretation of the Schubert polynomial $\mathfrak S _{ w}$ mathfrakS_$\omega $ in terms of the reduced decompositions of the permutation $w$. Using this result, a variation of Schensted's correspondence due to Edelman and Greene allows one to associate in a natural way a certain set $M _{ w}$ mathcalM_$\omega $ of tableaux with $w$, each tableau contributing a single term to $\mathfrak S _{ w}$ mathfrakS_$\omega $ . This correspondence leads to many problems and conjectures, whose interrelation is investigated. In Section 2 we consider permutations with no decreasing subsequence of length three (or 321-avoiding permutations). We show for such permutations that $\mathfrak S _{ w}$ mathfrakS_$\omega $ is a flag skew Schur function. In Section 3 we use this result to obtain some interesting properties of the rational function $8 _{ l/ m} (1, q, q ^{2}$ , frac14 ) 8_$\lambda /\mu $ (1,q,q^2 , $\ldots $) , where $8 _{ l/ m}$ 8_$\lambda /\mu $ denotes a skew Schur function.
Keywords: divided difference operator, Schubert polynomial, reduced decomposition, edelman-Greene correspondence, 321-avoiding permutation, flag skew Schur function, principal specialization
@article{JAC_1993__2_4_a4,
     author = {Billey, Sara C. and Jockusch, William and Stanley, Richard P.},
     title = {Some combinatorial properties of {Schubert} polynomials},
     journal = {Journal of Algebraic Combinatorics},
     pages = {345--374},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1993__2_4_a4/}
}
TY  - JOUR
AU  - Billey, Sara C.
AU  - Jockusch, William
AU  - Stanley, Richard P.
TI  - Some combinatorial properties of Schubert polynomials
JO  - Journal of Algebraic Combinatorics
PY  - 1993
SP  - 345
EP  - 374
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1993__2_4_a4/
LA  - en
ID  - JAC_1993__2_4_a4
ER  - 
%0 Journal Article
%A Billey, Sara C.
%A Jockusch, William
%A Stanley, Richard P.
%T Some combinatorial properties of Schubert polynomials
%J Journal of Algebraic Combinatorics
%D 1993
%P 345-374
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1993__2_4_a4/
%G en
%F JAC_1993__2_4_a4
Billey, Sara C.; Jockusch, William; Stanley, Richard P. Some combinatorial properties of Schubert polynomials. Journal of Algebraic Combinatorics, Tome 2 (1993) no. 4, pp. 345-374. http://geodesic.mathdoc.fr/item/JAC_1993__2_4_a4/