A $q$-analog of the hook walk algorithm for random Young tableaux
Journal of Algebraic Combinatorics, Tome 2 (1993) no. 4, pp. 383-396.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A probabilistic algorithm, called the q-hook walk, is defined. For a given Young diagram, it produces a new one by adding a random box with probabilities, depending on a positive parameter $q$. The corresponding Markov chain in the space of infinite Young tableaux is closely related to the knot invariant of Jones, constructed via traces of Hecke algebras. For $q = 1$, the algorithm is essentially the hook walk of Greene, Nijenhuis, and Wilf. The $q$-hook formula and a $q$-deformation of Young graph are also considered.
Keywords: Young diagram, random Young tableau, hook formula, q-analog, Hecke algebra
@article{JAC_1993__2_4_a2,
     author = {Kerov, S.},
     title = {A $q$-analog of the hook walk algorithm for random {Young} tableaux},
     journal = {Journal of Algebraic Combinatorics},
     pages = {383--396},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1993__2_4_a2/}
}
TY  - JOUR
AU  - Kerov, S.
TI  - A $q$-analog of the hook walk algorithm for random Young tableaux
JO  - Journal of Algebraic Combinatorics
PY  - 1993
SP  - 383
EP  - 396
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1993__2_4_a2/
LA  - en
ID  - JAC_1993__2_4_a2
ER  - 
%0 Journal Article
%A Kerov, S.
%T A $q$-analog of the hook walk algorithm for random Young tableaux
%J Journal of Algebraic Combinatorics
%D 1993
%P 383-396
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1993__2_4_a2/
%G en
%F JAC_1993__2_4_a2
Kerov, S. A $q$-analog of the hook walk algorithm for random Young tableaux. Journal of Algebraic Combinatorics, Tome 2 (1993) no. 4, pp. 383-396. http://geodesic.mathdoc.fr/item/JAC_1993__2_4_a2/