Semiboolean SQS-skeins
Journal of Algebraic Combinatorics, Tome 2 (1993) no. 2, pp. 147-153.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We will present a counter example to the conjecture that the class of boolean SQS-skeins is defined by the equation $q$( x, u,$ q( y, u, z)) = q( q$( x, u, y), u, z ). The SQS-skeins satisfying this equation will be seen to be exactly those SQS-skeins that correspond to Steiner quadruple systems whose derived Steiner triple systems are all projective geometries.
Keywords: Steiner quadruple system, Steiner triple system, SQS-skein, semiboolean, derived Steiner triple system, projective geometry
@article{JAC_1993__2_2_a2,
     author = {Guelzow, Andreas J.},
     title = {Semiboolean {SQS-skeins}},
     journal = {Journal of Algebraic Combinatorics},
     pages = {147--153},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1993__2_2_a2/}
}
TY  - JOUR
AU  - Guelzow, Andreas J.
TI  - Semiboolean SQS-skeins
JO  - Journal of Algebraic Combinatorics
PY  - 1993
SP  - 147
EP  - 153
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1993__2_2_a2/
LA  - en
ID  - JAC_1993__2_2_a2
ER  - 
%0 Journal Article
%A Guelzow, Andreas J.
%T Semiboolean SQS-skeins
%J Journal of Algebraic Combinatorics
%D 1993
%P 147-153
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1993__2_2_a2/
%G en
%F JAC_1993__2_2_a2
Guelzow, Andreas J. Semiboolean SQS-skeins. Journal of Algebraic Combinatorics, Tome 2 (1993) no. 2, pp. 147-153. http://geodesic.mathdoc.fr/item/JAC_1993__2_2_a2/