Alternating sign matrices and some deformations of Weyl's denominator formulas
Journal of Algebraic Combinatorics, Tome 2 (1993) no. 2, pp. 155-176.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: An alternating sign matrix is a square matrix whose entries are 1, 0, or -1, and which satisfies certain conditions. Permutation matrices are alternating sign matrices. In this paper, we use the (generalized) Littlewood's formulas to expand the products Õ $_{ i = 1} ^{ n} (1 - tx _{ i} )$ Õ $_{1 \leqslant i j \leqslant n} (1 - t ^{2} x _{ i} x _{} )(1 - t ^{2} x _{ i} x _{ j} ^{ - 1} )$ prodlimits_i = 1^n (1 - tx_i )prodlimits_$1 \leqslant $i j $\leqslant n$ (1 - t^2 x_i x_ )(1 - t^2 x_i x_j^ - 1 ) and Õ $_{ i = 1} ^{ n} (1 = tx _{} ) (1 + t ^{2} x _{ i} )$ Õ $_{1 \leqslant i j \leqslant n} (1 - t ^{2} x _{ i} x _{ j} )(1 - t ^{2} x _{ i} x _{ j} ^{ - 1} )$ prodlimits_i = 1^n (1 = tx_ ) (1 + t^2 x_i )prodlimits_$1 \leqslant $i j $\leqslant n$ (1 - t^2 x_i x_j )(1 - t^2 x_i x_j^ - 1 ) 2 as sums indexed by sets of alternating sign matrices invariant under a $180^\circ $rotation. If we put $t = 1$, these expansion formulas reduce to the Weyl's denominator formulas for the root systems of type $B _{n}$ and $C _{n}$. A similar deformation of the denominator formula for type $D _{n}$ is also given.
Keywords: alternating sign matrix, monotone triangle, Weyl's denominator formula, Littlewood's formula
@article{JAC_1993__2_2_a1,
     author = {Okada, Soichi},
     title = {Alternating sign matrices and some deformations of {Weyl's} denominator formulas},
     journal = {Journal of Algebraic Combinatorics},
     pages = {155--176},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1993__2_2_a1/}
}
TY  - JOUR
AU  - Okada, Soichi
TI  - Alternating sign matrices and some deformations of Weyl's denominator formulas
JO  - Journal of Algebraic Combinatorics
PY  - 1993
SP  - 155
EP  - 176
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1993__2_2_a1/
LA  - en
ID  - JAC_1993__2_2_a1
ER  - 
%0 Journal Article
%A Okada, Soichi
%T Alternating sign matrices and some deformations of Weyl's denominator formulas
%J Journal of Algebraic Combinatorics
%D 1993
%P 155-176
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1993__2_2_a1/
%G en
%F JAC_1993__2_2_a1
Okada, Soichi. Alternating sign matrices and some deformations of Weyl's denominator formulas. Journal of Algebraic Combinatorics, Tome 2 (1993) no. 2, pp. 155-176. http://geodesic.mathdoc.fr/item/JAC_1993__2_2_a1/