Young straightening in a quotient $S\sb n$-module
Journal of Algebraic Combinatorics, Tome 2 (1993) no. 1, pp. 5-23.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We describe a straightening algorithm for the action of $S _{n}$ on a certain graded ring $R _{ m} R_\mu $. The ring $R _{ m} R_\mu $appears in the work of C. de Concini and C. Procesi [2] and T. Tanisaki [8], and more recently in the work of A. Garsia and C. Procesi [4]. This ring is a graded version of the permutation representation resulting from the action of $S _{n}$ on the left cosets of a Young subgroup. As a corollary of our straightening algorithm we obtain a combinatorial proof of the fact that the top degree component of $R _{ m} R_\mu $affords the irreducible representation of $S _{n}$ indexed by $mgr$.
Keywords: graded permutation representation, straightening algorithm, Young's natural representation, symmetric group
@article{JAC_1993__2_1_a5,
     author = {Barcelo, H\'el\`ene},
     title = {Young straightening in a quotient $S\sb n$-module},
     journal = {Journal of Algebraic Combinatorics},
     pages = {5--23},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1993__2_1_a5/}
}
TY  - JOUR
AU  - Barcelo, Hélène
TI  - Young straightening in a quotient $S\sb n$-module
JO  - Journal of Algebraic Combinatorics
PY  - 1993
SP  - 5
EP  - 23
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1993__2_1_a5/
LA  - en
ID  - JAC_1993__2_1_a5
ER  - 
%0 Journal Article
%A Barcelo, Hélène
%T Young straightening in a quotient $S\sb n$-module
%J Journal of Algebraic Combinatorics
%D 1993
%P 5-23
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1993__2_1_a5/
%G en
%F JAC_1993__2_1_a5
Barcelo, Hélène. Young straightening in a quotient $S\sb n$-module. Journal of Algebraic Combinatorics, Tome 2 (1993) no. 1, pp. 5-23. http://geodesic.mathdoc.fr/item/JAC_1993__2_1_a5/