On subgraphs in distance-regular graphs
Journal of Algebraic Combinatorics, Tome 1 (1992) no. 4, pp. 353-362.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Terwilliger [15] has given the diameter bound $dle$ (s - 1)$( k - 1) + 1$ for distance-regular graphs with girth $2 s$ and valency $k$. We show that the only distance-regular graphs with even girth which reach this bound are the hypercubes and the doubled Odd graphs. Also we improve this bound for bipartite distance-regular graphs. Weichsel [17] conjectures that the only distance-regular subgraphs of a hypercube are the even polygons, the hypercubes and the doubled Odd graphs and proves this in the case of girth 4. We show that the only distance-regular subgraphs of a hypercube with girth 6 are the doubled Odd graphs. If the girth is equal to 8, then its valency is at most 12.
Keywords: distance-regular graph, hypercubes, doubled odd graph, subgraph, uniformly geodetic graph
@article{JAC_1992__1_4_a1,
     author = {Koolen, J.H.},
     title = {On subgraphs in distance-regular graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {353--362},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1992__1_4_a1/}
}
TY  - JOUR
AU  - Koolen, J.H.
TI  - On subgraphs in distance-regular graphs
JO  - Journal of Algebraic Combinatorics
PY  - 1992
SP  - 353
EP  - 362
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1992__1_4_a1/
LA  - en
ID  - JAC_1992__1_4_a1
ER  - 
%0 Journal Article
%A Koolen, J.H.
%T On subgraphs in distance-regular graphs
%J Journal of Algebraic Combinatorics
%D 1992
%P 353-362
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1992__1_4_a1/
%G en
%F JAC_1992__1_4_a1
Koolen, J.H. On subgraphs in distance-regular graphs. Journal of Algebraic Combinatorics, Tome 1 (1992) no. 4, pp. 353-362. http://geodesic.mathdoc.fr/item/JAC_1992__1_4_a1/