The subconstituent algebra of an association scheme. I
Journal of Algebraic Combinatorics, Tome 1 (1992) no. 4, pp. 363-388.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We introduce a method for studying commutative association schemes with $\mathbb C$ mathbbC -algebra $T = T( x)$ whose structure reflects the combinatorial structure of $Y$. We call T the subconstituent algebra of Y with respect to x. Roughly speaking, $T$ is a combinatorial analog of the centralizer algebra of the stabilizer of $x$ in the automorphism group of $Y$. In general, the structure of $T$ is not determined by the intersection numbers of $Y$, but these parameters do give some information. Indeed, we find a relation among the generators of $T$ for each vanishing intersection number or Krein parameter.
Keywords: association scheme, $P$-polynomial, $Q$-polynomial, distance-regular graph
@article{JAC_1992__1_4_a0,
     author = {Terwilliger, Paul},
     title = {The subconstituent algebra of an association scheme. {I}},
     journal = {Journal of Algebraic Combinatorics},
     pages = {363--388},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1992__1_4_a0/}
}
TY  - JOUR
AU  - Terwilliger, Paul
TI  - The subconstituent algebra of an association scheme. I
JO  - Journal of Algebraic Combinatorics
PY  - 1992
SP  - 363
EP  - 388
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1992__1_4_a0/
LA  - en
ID  - JAC_1992__1_4_a0
ER  - 
%0 Journal Article
%A Terwilliger, Paul
%T The subconstituent algebra of an association scheme. I
%J Journal of Algebraic Combinatorics
%D 1992
%P 363-388
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1992__1_4_a0/
%G en
%F JAC_1992__1_4_a0
Terwilliger, Paul. The subconstituent algebra of an association scheme. I. Journal of Algebraic Combinatorics, Tome 1 (1992) no. 4, pp. 363-388. http://geodesic.mathdoc.fr/item/JAC_1992__1_4_a0/