Group actions on the cubic tree
Journal of Algebraic Combinatorics, Tome 1 (1992) no. 3, pp. 209-218.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It is known that every group which acts transitively on the ordered edges of the cubic tree $Gamma _{3}$, with finite vertex stabilizer, is isomorphic to one of seven finitely presented subgroups of the full automorphism group of $Gamma _{3}$-one of which is the modular group. In this paper a complete answer is given for the question (raised by Djokovi $cacute$ and Miller) as to whether two such subgroups which intersect in the modular group generate their free product with the modular group amalgamated.
Keywords: group actions, trees
@article{JAC_1992__1_3_a5,
     author = {Conder, Marston},
     title = {Group actions on the cubic tree},
     journal = {Journal of Algebraic Combinatorics},
     pages = {209--218},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1992__1_3_a5/}
}
TY  - JOUR
AU  - Conder, Marston
TI  - Group actions on the cubic tree
JO  - Journal of Algebraic Combinatorics
PY  - 1992
SP  - 209
EP  - 218
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1992__1_3_a5/
LA  - en
ID  - JAC_1992__1_3_a5
ER  - 
%0 Journal Article
%A Conder, Marston
%T Group actions on the cubic tree
%J Journal of Algebraic Combinatorics
%D 1992
%P 209-218
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1992__1_3_a5/
%G en
%F JAC_1992__1_3_a5
Conder, Marston. Group actions on the cubic tree. Journal of Algebraic Combinatorics, Tome 1 (1992) no. 3, pp. 209-218. http://geodesic.mathdoc.fr/item/JAC_1992__1_3_a5/