Half-transitive graphs of prime-cube order
Journal of Algebraic Combinatorics, Tome 1 (1992) no. 3, pp. 275-282.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We call an undirected graph X half-transitive if the automorphism group Aut $X$ of $X$ acts transitively on the vertex set and edge set but not on the set of ordered pairs of adjacent vertices of $X$. In this paper we determine all half-transitive graphs of order $p ^{3}$ and degree 4, where $p$ is an odd prime; namely, we prove that all such graphs are Cayley graphs on the non-Abelian group of order $p ^{3}$ and exponent $p ^{2}$, and up to isomorphism there are exactly $( p - 1)/2$ such graphs. As a byproduct, this proves the uniqueness of Holt's half-transitive graph with 27 vertices.
Keywords: half-transitive graphs, Cayley graphs, simple groups, Schur multiplier
@article{JAC_1992__1_3_a1,
     author = {Xu, Mingyao},
     title = {Half-transitive graphs of prime-cube order},
     journal = {Journal of Algebraic Combinatorics},
     pages = {275--282},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1992__1_3_a1/}
}
TY  - JOUR
AU  - Xu, Mingyao
TI  - Half-transitive graphs of prime-cube order
JO  - Journal of Algebraic Combinatorics
PY  - 1992
SP  - 275
EP  - 282
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1992__1_3_a1/
LA  - en
ID  - JAC_1992__1_3_a1
ER  - 
%0 Journal Article
%A Xu, Mingyao
%T Half-transitive graphs of prime-cube order
%J Journal of Algebraic Combinatorics
%D 1992
%P 275-282
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1992__1_3_a1/
%G en
%F JAC_1992__1_3_a1
Xu, Mingyao. Half-transitive graphs of prime-cube order. Journal of Algebraic Combinatorics, Tome 1 (1992) no. 3, pp. 275-282. http://geodesic.mathdoc.fr/item/JAC_1992__1_3_a1/