Matroid shellability, $\beta$-systems, and affine hyperplane arrangements
Journal of Algebraic Combinatorics, Tome 1 (1992) no. 3, pp. 283-300.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The broken-circuit complex is fundamental to the shellability and homology of matroids, geometric lattices, and linear hyperplane arrangements. This paper introduces and studies the [ `$( BC)] ( M) \overline $BC (M) , and the basic cycles are explicitly constructed. Similarly, an EL-shelling for the geometric semilattice associated with $M$ is produced,_and it is shown that the [ `$( BC)] ( M) \overline $BC (M) The intersection poset of any (real or complex) afflnehyperplane arrangement $Agr$ is a geometric semilattice. Thus the construction yields a set of basic cycles, indexed by $betanbc( M)$, for the union $xcupAgr$ of such an arrangement.
Keywords: matroid, $beta$-invariant, broken-circuit complex, shellability, affine hyperplane arrangement
@article{JAC_1992__1_3_a0,
     author = {Ziegler, G\"unter M.},
     title = {Matroid shellability, $\beta$-systems, and affine hyperplane arrangements},
     journal = {Journal of Algebraic Combinatorics},
     pages = {283--300},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1992__1_3_a0/}
}
TY  - JOUR
AU  - Ziegler, Günter M.
TI  - Matroid shellability, $\beta$-systems, and affine hyperplane arrangements
JO  - Journal of Algebraic Combinatorics
PY  - 1992
SP  - 283
EP  - 300
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1992__1_3_a0/
LA  - en
ID  - JAC_1992__1_3_a0
ER  - 
%0 Journal Article
%A Ziegler, Günter M.
%T Matroid shellability, $\beta$-systems, and affine hyperplane arrangements
%J Journal of Algebraic Combinatorics
%D 1992
%P 283-300
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1992__1_3_a0/
%G en
%F JAC_1992__1_3_a0
Ziegler, Günter M. Matroid shellability, $\beta$-systems, and affine hyperplane arrangements. Journal of Algebraic Combinatorics, Tome 1 (1992) no. 3, pp. 283-300. http://geodesic.mathdoc.fr/item/JAC_1992__1_3_a0/