A generalized Vandermonde determinant
Journal of Algebraic Combinatorics, Tome 1 (1992) no. 2, pp. 105-109.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove two determinantal identities that generalize the Vandermondedeterminant identity $det( x _{ i} ^{ j} ) _{ i, j = 0, \frac{1}{4} , m}$ = Õ $_{0 \leqslant i j \leqslant m} ( x _{ j} - x _{ i} ) \det $(x_i^j )_i,j = 0, $\ldots ,m$ = prodlimits_$0 \leqslant $i j $\leqslant m$ (x_j - x_i ) . In the first of our identities the set ${0, \dots , m}$ indexing the rows and columns of thedeterminant is replaced by an arbitrary finite order ideal in the set ofsequences of nonnegative integers which are 0 except for a finite numberof components. In the second the index set is replaced by an arbitraryfinite order ideal in the set of all partitions.
Keywords: Vandermonde, determinant, partition, ideal
@article{JAC_1992__1_2_a5,
     author = {Buck, Marshall W. and Coley, Raymond A. and Robbins, David P.},
     title = {A generalized {Vandermonde} determinant},
     journal = {Journal of Algebraic Combinatorics},
     pages = {105--109},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1992__1_2_a5/}
}
TY  - JOUR
AU  - Buck, Marshall W.
AU  - Coley, Raymond A.
AU  - Robbins, David P.
TI  - A generalized Vandermonde determinant
JO  - Journal of Algebraic Combinatorics
PY  - 1992
SP  - 105
EP  - 109
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1992__1_2_a5/
LA  - en
ID  - JAC_1992__1_2_a5
ER  - 
%0 Journal Article
%A Buck, Marshall W.
%A Coley, Raymond A.
%A Robbins, David P.
%T A generalized Vandermonde determinant
%J Journal of Algebraic Combinatorics
%D 1992
%P 105-109
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1992__1_2_a5/
%G en
%F JAC_1992__1_2_a5
Buck, Marshall W.; Coley, Raymond A.; Robbins, David P. A generalized Vandermonde determinant. Journal of Algebraic Combinatorics, Tome 1 (1992) no. 2, pp. 105-109. http://geodesic.mathdoc.fr/item/JAC_1992__1_2_a5/