Generating random elements in $SL\sb n(F\sb q)$ by random transvections
Journal of Algebraic Combinatorics, Tome 1 (1992) no. 2, pp. 133-150.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper studies a random walk based on random transvections in $SL _{n}( F _{ q })$ and shows that, given Ĩ $\in > 0$, there is a constant $c$ such that after $n + c$ steps the walk is within a distance Ĩ $\in $from uniform and that after $n - c$ steps the walk is a distance at least 1 - Ĩ $\in $from uniform. This paper uses results of Diaconis and Shahshahani to get the upper bound, uses results of Rudvalis to get the lower bound, and briefly considers some other random walks on $SL _{n}( F _{ q })$ to compare them with random transvections.
Keywords: transvection, random walk, representation theory, upper bound lemma
@article{JAC_1992__1_2_a3,
     author = {Hildebrand, Martin},
     title = {Generating random elements in $SL\sb n(F\sb q)$ by random transvections},
     journal = {Journal of Algebraic Combinatorics},
     pages = {133--150},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_1992__1_2_a3/}
}
TY  - JOUR
AU  - Hildebrand, Martin
TI  - Generating random elements in $SL\sb n(F\sb q)$ by random transvections
JO  - Journal of Algebraic Combinatorics
PY  - 1992
SP  - 133
EP  - 150
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_1992__1_2_a3/
LA  - en
ID  - JAC_1992__1_2_a3
ER  - 
%0 Journal Article
%A Hildebrand, Martin
%T Generating random elements in $SL\sb n(F\sb q)$ by random transvections
%J Journal of Algebraic Combinatorics
%D 1992
%P 133-150
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_1992__1_2_a3/
%G en
%F JAC_1992__1_2_a3
Hildebrand, Martin. Generating random elements in $SL\sb n(F\sb q)$ by random transvections. Journal of Algebraic Combinatorics, Tome 1 (1992) no. 2, pp. 133-150. http://geodesic.mathdoc.fr/item/JAC_1992__1_2_a3/